ANURAG DILIP GORKAR

+1-9195211316 | <u>adgorkar@ncsu.edu</u> | <u>linkedin.com/in/anurag-gorkar</u> | <u>github.com/AnuragGorkar</u> | <u>adgorkar.vercel.app</u> **Education:**

North Carolina State University, Raleigh, NC || Master of Computer Science(Expected)08/2024 - 05/2026Courses: Automated Learning and Data Analysis, Software Engineering, Object Oriented ProgrammingCGPA: 3.87/4Pune Institute of Computer Technology, Pune, India || BE Computer Engineering05/2018 - 05/2022Courses: Computer Networks, Operating Systems, Data Structures, Web Technology, Database SystemsCGPA: 9.6/10

Skills:

Languages & Frameworks: Python, R, C++, Java, Kotlin, Dart, SQL, JavaScript, HTML, CSS, Ruby, Type Script Tools & Platforms: Databricks, Jupyter, Anaconda, Tableau, MS Excel, Selenium, Apache Airflow, GitHub Big Data & Data Bases: Apache Spark, Hadoop, MongoDB, MySQL, PostgreSQL, Cassandra, Apache Kafka ML Frameworks: TensorFlow, PyTorch, Keras, Scikit-learn, PySpark, Hugging Face, OpenCV, NLTK Web & Application Development: Flutter, Android Studio, Node.js, React, Angular, Flask, Django, RESTful APIs

Work Experience & Internships:

Unit Manager: PL Data Science, Bajaj Finserv Ltd., Pune, India

- *Propensity Model:* Developed and deployed an XGBoost model within an MLflow-managed Databricks pipeline to predict personal loan acquisition, boosting conversion rates by 57% through efficient data processing with SQL and PySpark.
- *Risk Scoring Model:* Built a deep learning regression model to identify high-risk customers, reducing bad debt by up to 2%. Performed roll rate and vintage analysis and optimized performance through stepwise selection and WoE transformation.
- *Survival Analysis:* Executed survival analysis to accurately forecast 12-month loan default probabilities, leveraging Kaplan-Meier estimators and Cox regression to analyze and quantify borrower risk factors, improving risk assessment precision by 15%.

Data Engineering and Research Intern, ASAR, Pune, India

1....

• •

...

- Engineered a pipeline using **R** and Google Earth Engine to generate minimum travel time maps for healthcare access, based on Weiss et al.'s accessibility indicators, enhancing data processing efficiency by 20%.
- Spearheaded population-level geographic health access analysis in **Python** and R, presenting key findings at the Consortium of Universities for Global Health (CUGH) 2022, improving stakeholder engagement by 25%.

Software & Research Intern, Defence Research & Development Organization, Remote 07/2020 – 09/2020

- Designed a deep learning framework using **TensorFlow** to detect steganography in images and automated the analysis of HEX and EXIF data with Python scripts, increasing detection accuracy by 30%.
- Developed a secure, user-friendly web interface with **React** for image uploads, reducing upload time by 40%. Implemented **Flask** to handle API requests and processed images in a secure **Docker** environment with sandboxed containers, enhancing system security.

...

Projects:

• •

<u>CoviCare: A Secure Vitals Collection and Diagnosis Application</u> Flutter IoT Tensor Flow	Firebase SQLite
• Designed and developed a Raspberry Pi-based embedded device to capture and securely transmit	patient vitals to a
mobile application. Implemented a CNN and a U-Net-based image segmentation model in the mob	ile application for
Covid-19 diagnosis based on uploaded CT scans.	
• Employed machine learning and ANN's to analyze cough sounds and generate a Covid-19 suscept	ibility score.
SOS: Emergency Car Accident Care System Python Raspberry Pi React JS Java (And	lroid) Fire store
• Developed a Raspberry Pi-based SOS accident detection and alarm system using a gyroscope, a GPS. Integrated real-time Firestore database to trigger alerts, sent to emergency contacts via a smaller	
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. 	MS alerts in areas
• Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S	MS alerts in areas
• Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity.	MS alerts in areas
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. Publications: 	MS alerts in areas
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. Publications: CoviCare: Secure Covid-19 Vitals Diagnosis and Disease Identification Application 	07/2023
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. <i>Publications:</i> CoviCare: Secure Covid-19 Vitals Diagnosis and Disease Identification Application 18th International Conference on Data Science (ICDATA) 	07/2023
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. Publications: CoviCare: Secure Covid-19 Vitals Diagnosis and Disease Identification Application 18th International Conference on Data Science (ICDATA) Correlations of Rural-Urban Differences in Geographic Healthcare Access Coverage and other Access 	07/2023
 Utilized Google Maps API to notify nearby hospitals and police stations, with a GSM module for S without internet connectivity. Publications: CoviCare: Secure Covid-19 Vitals Diagnosis and Disease Identification Application 18th International Conference on Data Science (ICDATA) Correlations of Rural-Urban Differences in Geographic Healthcare Access Coverage and other Acces Ecological Study of 128 Countries 	07/2023 ss measures: An

Interests: Reading | Cricket | Swimming | Trekking

Languages: English | Hindi | Marathi

06/2021 - 02/2022

.

07/2022 – 07/2024 Databricks pipeline